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Summary

A study of plane-acoustic-wave propagation in small tubes
with a cross section in the shape of a flattened oval is described.
To begin, theoretical descriptions of a plane wave propagating
in a tube with circular cross section and between a pair of
infinite parallel plates, including viscous and thermal damping,
are expressed in similar form. For a wide range of useful duct
sizes, the propagation constant (whose real and imaginary parts
are the amplitude attenuation rate and the wave number,
respectively) is very nearly the same function of frequency
for both cases if the radius of the circular tube is the same
as the distance between the parallel plates. This suggests that
either a circular-cross-section model or a flat-plate model can
be used to calculate wave propagation in flat-oval tubing, or
any other shape tubing, if its size is expressed in terms of an
equivalent radius, given by g = 2 X (cross-sectional area)/
(length of perimeter). Measurements of the frequency response
of two sections of flat-oval tubing agree with calculations based
on this idea. Flat-plate formulas are derived, the use of
transmission-line matrices for calculations of plane waves in
compound systems of ducts is described, and examples of com-
puter programs written to carry out the calculations are shown.

Introduction

‘“The problem of the propagation of sound waves in gases
contained in cylindrical tubes is a classical one, to which
famous names are connected like Helmholtz, Kirchhoff, and
Rayleigh. Since then many papers have been written on the
subject, often in relation to studies dealing with the dynamic
responses of pressure transmission lines.’” So states H.
Tijdeman, referring to 34 previous papers in the first paragraph
of one of his reports on the subject (ref. 1). (See also refs.
2 and 3.)

Much less has been written about the propagation of sound
waves in ducts of noncircular cross section, however,
particularly for propagation in narrow tubes, where viscous
and thermal losses at the walls are significant. It was the goal
of this study to develop an analytical framework for calculating
the pressure-transfer properties of the flat-oval tubing shown
in cross section in figure 1, so that its behavior could be
predicted when it is used as probe tubing for a pressure

transducer. The hope was that results could be cast in a form
similar to the recursion relation of Bergh and Tijdeman (ref.
4), which has been used to analyze pressure probes of circular
cross section (ref. 5). This recursion relation is obtained in
a slightly more general form in this report (appendix C).

However, in the section Solving Fluid Equations for
Noncircular Tubing, it is argued that a Bergh and Tijdeman
type recursion relation cannot be found for tubing of
noncircular cross section for a viscous, thermally conducting
gas. That is to say, the fundamental differential equations
describing the behavior of a fluid in a duct cannot be solved
in closed form to the same degree of approximation used for
the Bergh and Tijdeman analysis in any coordinate system
other than circular cylindrical.

The solution for a plane wave propagating between two
infinite parallel plates can be found, however, and the section
Comparison With Flat-Plate Geometry is concerned with a
comparison of the circular-tube and parallel-plate results. Over
a useful range of tubing sizes and frequencies, the two solutions
are remarkably similar if a generalized radius g = 2 X (area
of cross section)/(length of perimeter of cross section) is
properly used to characterize the size of the waveguides. Thus,
within the range where the solutions are similar, either should
give a close approximation to the acoustical properties of flat-
oval tubing, described by its generalized radius. This con-
clusion applies also to tubing with other cross-sectional shapes
as well.

The pressure-transfer properties of short sections of flat-
oval tubing were measured, and the results are presented in
the section Measurements on Flat-Oval Tubing. The theoretical
predictions agree very well with the measurements. Limits to
this technique for calculating the pressure-transfer properties
of noncircular tubing are suggested in the section Concluding
Remarks.

Four appendixes conclude the report. A list of symbols used
in the equations is given as appendix A. Appendix B gives
details of the solution for plane waves propagating between
infinite parallel plates. Appendix C describes the use of
transmission-line matrices for calculating the acoustical
properties of systems of tubing. (This method is equivalent
to but more straightforward and powerful than the Bergh and
Tijdeman recursion relation.) Listings of several computer
programs written to implement the transmission-line
calculations are presented and explained in appendix D, with
several numerical examples for reference.
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Figure 1.—Cross section of flat-oval tubing investigated.

Solving Fluid Equations for
Noncircular Tubing

There are four basic equations describing the properties of
a viscous gas with a finite thermal conductivity. These four
equations are the following:

The force equation, which includes viscosity, is the Navier-
Stokes equation (refs. 6 and 7), which may be written

Du’ 1
e’ =—Vp +u|(VeViu' +-V(Veu)| (1)
Dt 3

In this equation, which is a vector equation having three
components, p’ is the fluid density, u’ is the fluid velocity,
p’ is the absolute pressure, and p is the constant shear viscosity
coefficient. The Stokes assumption that the bulk (or volume)
viscosity is zero has been made, and the differential operator
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In curvilinear coordinates, the scalar operator V « ¥V can be
evaluated by using the identity

(VeViu' = V(Veu')— VYX(VXUu’) 3)

The equation of continuity of the fluid (or conservation of
mass) may be written (ref. 8, p. 8, p. 512)

Dp’
Dt

+p' Veu =0 @)

The thermodynamic properties of the gas are assumed to
be described by the ideal gas equation of state

p’ =p'RT’ )

and an energy equation describing heat conduction (refs. 9 and
10)

— - -V =0 (6

Here 77 is absolute temperature, c, is the specific heat at
constant pressure, and A is the thermal conductivity of the
fluid; a second-order term describing heat transfer due to
internal friction has been neglected (see refs. 1 and 4).

When written in cylindrical coordinates, equations (1), (4),
(5), and (6) form the starting point for the analysis in the
appendixes of references 1 and 4, where it is assumed from
symmetry that there is no azimuthal velocity. The solutions
for the circular tube proceed by setting

P’ =pq+pe’”
)

T =T, + Te/
u’ = ue/

p’ =p,+ pe’

where j = V-1, and Pa» Pa» and T, are constants represent-
ing the ambient or average values of pressure, density, and
temperature. As usual, the position-dependent disturbance
amplitudes p, p, and T are assumed to be small compared to
the ambient values. Similarly, the magnitude of the fluid
velocity amplitude u is assumed small compared to c, the free-
space adiabatic phase velocity of sound given by c=v+p,/p,,
where 7y is the ratio of specific heats v = ¢,/c,. In addition,
it is assumed that (1) the internal tube radius r is small
compared to the free-space wavelength (wr/c << 1), (2) the
radial velocity component is smaller than the axial velocity
by about this same factor, and (3) the flow is laminar
throughout the system. (Laminar flow is interpreted to mean
that differentiation with respect to the axial coordinate yields
a quantity of the same order as does dividing by the free-space
wavelength; differentiation with respect to the radial coordinate
gives a result of the same order as does dividing by r.) Under
these assumptions, closed-form solutions to these equations
in cylindrical coordinates are obtained in references 1 and 4.

For purposes of this investigation, it is natural to consider
solving the basic equations to the same degree of approxi-
mation in other coordinate systems. The difficulty encountered
in such attempts may be illustrated by using rectangular
coordinates as an example.

Choose the x-axis to lie along the center axis of a long tube
with rectangular cross section, with the y- and z-axes
perpendicular to the duct walls. Denote the x-component of
the harmonic amplitude of the fluid velocity by «, the y-
component by v, and the z-component by w. Writing the basic
equations (1), (4), (5), and (6) in rectangular coordinates,
substituting equations (7), and retaining only the most
significant terms in each equation (as in the circular tube case)
yield the following six equations:
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These are similar to equations (6) through (10) in the
appendix of reference 4 or equations (B1) through (BS5) of
reference 1, except that they contain two independent co-
ordinates or components perpendicular to the tube axis instead
of one.

To this approximation as in the circular case, equations (9a)
and (9b), which are the two transverse components of the
Navier-Stokes equation, directly imply that the pressure waves
are plane waves. The planes of constant pressure coincide with
planes of constant x., However, the rectangular case differs
from the circular case because it has less symmetry.

The rectangular case has two independent transverse
components of fluid velocity, denoted by v and w, whereas
by symmetry the circular case has only one transverse velocity,
the radial velocity. In order to solve the problem, then, we
need one more equation in the rectangular case than in the
circular geometry to determine an additional unknown. This
additional equation is the third component of the Navier-Stokes
equation given in equation (9), but unfortunately it provides
no information about v or w. The two transverse velocities
appear only together in equation (10) with no additional
relation which can be used to separate them. In addition, if
one tries to solve equation (12) for temperature fluctuations,
one finds that with both y- and z-derivatives present the
separation of variables procedure is not successful.

Thus, the equations do not appear solvable to this
approximation in rectangular coordinates. Furthermore, we
would expect the same difficulty in any other coordinate system
lacking circular symmetry and thus having two independent
transverse velocity components, if we seek a plane wave in
pressure. In spite of the Bessel functions which appear, the
circular geometry is fundamentally the simplest case to
consider and is the only shape duct for which a closed solution
is possible.

Comparison with Flat-Plate Geometry

As mentioned by Lord Rayleigh, another effectively two-
dimensional case which can be solved, in addition to the
circular duct, is a plane wave propagating between a pair of
infinite parallel plates (ref. 11). A solution for that case is
derived in appendix B, and the results may be summarized
as follows: If a plane pressure wave propagates in the x-
direction between a pair of isothermal, rigid, infinite planes
located at y= = h/2, the x-dependent amplitude of the pressure
disturbance at frequency w is

p(x) = Ae®* + Be ™% (13)

Here, A and B are complex constants determined by boundary
conditions, and the complex propagation constant ¢ is

0= _?[F(a)]_m\/g (14)

In this expression,
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and Pr is the Prandtl number. (See appendix B.) At any
particular x, the average amplitude of the longitudinal fluid
velocity is

®

JWPa

7() = -2 Fla) (Ae"" _ Be“") (18)

Interestingly enough these expressions are of precisely the
same form as the corresponding quantities in the circular duct
solution, as found in equations (29), (30), and (42) in the
appendix of Bergh and Tijdeman (ref. 4). The only difference
is that for the infinite-flat-plate geometry the function F has
replaced the Bessel function ratio J,/J, appearing in the
circular-tube case. The arguments of the respective functions
are the same if one chooses the spacing & between the plates
equal to the radius r of the circular tube.

Not only are the overall expressions of the same form, but,
for equal arguments of the type used in these equations, the
magnitude and phase of the function F are actually quite similar
to the corresponding quantities for the Bessel function ratio.



If both are evaluated for an argument written as { = j*%s,
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For large arguments, both have the limiting value —1, so that
for very wide conduits, very high frequencies, high ambient
pressure, or vanishing viscosity and thermal conductivity the
propagation constant becomes jw/c. Between the extreme
limits, the magnitudes and phases of the two quantities are
plotted in figures 2 and 3. There it can be seen that the two
quantities are not identical, but are surprisingly similar. To
indicate the frequency range in which the important variation
of these two functions occurs in the system of interest, figures
2 and 3 show the values of s appropriate for 100 and 329 Hz
if s = hvp,w/p for air at atmospheric pressure and 300 °C
and 2 = 0.061 cm.

Quantities that are calculated by using these two similar
functions are also very much alike. Graphs of the real and
imaginary parts of the propagation constant ¢ as a function
of frequency are shown in figures 4 through 6, for several
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Figure 3.—Comparison of phases of J,({)/J, () and [(tan {/2)/({/2)]—1 as

function of real parameter s, where { = j3’2s.

values of r = k, given in centimeters. The imaginary part of
¢ is the wave number, inversely proportional to the phase
velocity of the wave in the conduit. It is the primary quantity
determining the resonant frequencies of standing waves in a
tube. The real part of ¢ is the factor giving the amplitude
attenuation rate with distance. In figures 4 through 6, the solid
straight line is the wave number for an ideal, inviscid gas,
the dashed lines ending in a circle are computed by using the
circular-tube expressions, and the dashed lines ending in a
square show the infinite-flat-plate values. The most noticeable
difference between the circular-tube and flat-plate propagation
constants is that for the smallest tubing the flat-plate geometry
has a larger attenuation factor, or greater viscous and thermal
damping, than the circular case. But the smallest case shown
has such large damping that tubing of that size would not be
useful for pressure-transmission purposes. The intermediate
pair of graphs turns out to show the propagation constant
appropriate for the flat-oval tubing of interest, and there the
flat-plate damping is only slightly greater than the circular-
tube damping.

For the particular case of infinite flat plates, figures 4
through 6 illustrate the assertion that theoretical expressions
derived for waves propagating in a circular tube may be
adapted to describe the properties of waves in ducts of arbitrary
cross-sectional shape. This may be done by simply replacing
r, the radius of the circular tube, by a generalized quantity
calculated as

g = 2 X (cross-sectional area of duct)/(length of
perimeter of cross section) 22)

wherever r appears in the equations (refs. 12 through 14). For
a circular tube, g = r, while in the limit that the width of a

R g
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(a) Wave number for circular-cross-section tube with radius of 1.0 cm, wave
between flat plates separated by 1.0 cm, and plane wave without thermal
or viscous damping.

(b) Attenuation factor for circular-cross-section tube with radius of 1.0 cm,
and wave between flat plates separated by 1.0 cm.

Figure 4.—Wave number and attenuation factor, imaginary and real parts,
respectively, of propagation constant of equations (13) and (14) as functions
of frequency.

rectangular duct becomes infinite, g = h. The assertion seems
true at least in that p(x) and #(x) are very nearly the same
function of g, frequency, and gas properties for waves
propagating both in a circular duct and between infinite parallel
plates over a wide range of sizes. It would be reasonable to
expect p(x) and #(x) to depend in the same way on the same
parameters in flat-oval tubing or tubing of other cross-sectional
shapes as well.
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(a) Wave number for circular-cross-section tube with radius of 0.060 cm,
wave between flat plates separated by 0.060 cm, and plane wave without
thermal or viscous damping.

(b) Attenuation factor for circular-cross-section tube with radius of 0.060 cm,
and wave between flat plates separated by 0.060 cm.

Figure 5.—Wave number and attenuation factor, imaginary and real parts,
respectively, of propagation constant of equations (13) and (14) as functions
of frequency.

Shown in figure 7 are rough sketches of circular, flat-oval,
and infinite-plate waveguides drawn with the same value of
g. The pressure and average-velocity waves in these three
systems, then, are described by almost the same expressions.
The properties of systems made up of tubing with any cross-
sectional shape should be calculable with a recursion relation
like that of Bergh and Tijdeman (ref. 4) or equivalent
transmission-line formulas (see appendix C), where in most
places r is replaced by the appropriate g.

However, care must be exercised, for not all such
replacements would be correct. The exceptions occur in
expressions for the characteristic impedance of a tube found
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thermal or viscous damping.

(b) Attenuation factor for circular-cross-section tube with radius of 0.010 cm,
and wave between flat plates separated by 0.010 cm.

Figure 6.—Wave number and attenuation factor, imaginary and real parts,
respectively, of propagation constant of equations (13) and (14) as functions
of frequency.

from equations (C10), (C12), and (C19) or the V, tube
volume factors in the Bergh and Tijdeman recursion relation
given here as equation (C57), where essentially the cross-
sectional area S of the tube enters as a result of requiring
conservation of mass flowing through the tube. The mass per
unit time passing point x is given by

B pusuts) 23)
dt Padli

In adapting this requirement to tubing of different shape, even
if S is expressed as #r?, set S equal to the actual cross-
sectional area of the new tube, rather than changing r to g.
Similarly, when calculating an appropriate end correction to
the geometrical length of a tube (0.82 r for flanged tubing or

N

Figure 7.—Cross-sectional shapes of circular, flat-oval, and infinite-parallel-
plate ducts, all having same size generalized or equivalent radius.

0.61 r for an unflanged opening), replace r by v S/ for a
noncircular tube (ref. 8, pp. 348-350).

Measurements on Flat-Oval Tubing

In order to evaluate the applicability of the circular-tube
and/or flat-plate expressions to the case of flat-oval tubing,
two samples of such tubing were mounted on the resonator
chamber of the large Galton whistle sound source shown in
figure 8 and described in reference 15. Silicon strain-gauge
pressure transducers were used to measure the pressure in the
whistle and in a small cavity at the end of the tubing. The
geometrical length of one sample was 5.08 cm and of the other
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Figure 8.—Galton whistle sound source for testing frequency response of flat-
oval probe microphone tubing.




was 7.62 cm, while the cavity volumes were 0.01325 and
0.01630 cm?, respectively. The cross-sectional area of the
tubing was 0.01714 cm?, and the length of the perimeter was
0.571 cm. Thus, g = 0.060. When the expected pressure-
transfer properties of the tubing were calculated, an end
correction of 0.07 cm was added to the geometrical length of
each tube.

The magnitudes of the pressure disturbance amplitudes were
measured by using two Princeton Applied Research model 126
lockin amplifiers operated as ac voltmeters, and the ratio of
the end-cavity pressure amplitude to the whistle pressure
amplitude was plotted as a function of frequency. The relative
phase of the two signals was also measured with one of the
lockin amplifiers. Care was taken to subtract the phase shift
in the signal channel input filter of the amplifier at each
frequency.

The experimental data are shown as crosses superimposed
on theoretical predictions in figures 9 (shorter tube) and 10
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Figure 9.—Ratio of cavity to whistle pressure amplitude and relative phase
of two signals as functions of frequency for flat-oval tubing of geometrical
length 5.08 ¢cm and equivalent radius g = 0.060.
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Figure 10.—Ratio of cavity to whistle pressure amplitude and relative phase
of two signals as functions of frequency for flat-oval tubing of geometrical
length 7.62 cm and equivalent radius g = 0.060.

(longer tube). The lengths of the bars on the crosses in these
figures do not signify experimental uncertainty. There are, in
principle, two theoretical curves on each graph, one from the
circular tube formulas and one for infinite flat plates, both
evaluated for g = 0.060 cm. The two curves are essentially
the same, however, except near the peaks in the pressure-
amplitude ratios. There the slightly greater damping in the flat-
plate case leads to a slightly lower peak. The relative phase
curves are totally indistinguishable.

The agreement between the experimental data and the
theoretical curves is excellent. Since figure 7 suggests that the
flat-oval tubing may resemble a pair of flat plates more than
a circular tube, one might expect the experimental points to
lie closer to the curves of the flat-plate model than those of
the circular one. In fact they do, but the possibility of slight
extra, uncontrolled damping or air leakage in the apparatus
implies that such fine distinctions would be hard to defend.

Concluding Remarks

Very satisfactory predictions of the acoustical properties of
pressure-transmission systems incorporating flat-oval tubing
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Figure 11.—Calculated magnitude of ratio of transducer cavity pressure to
pressure at probe tube inlet as a function of frequency for flat-oval tubing
of length 7.7 cm and equivalent radius g = 0.020 cm.

with an equivalent radius g = 0.060 cm can be made by using
equations derived either for circular tubes or a pair of infinite
flat plates. This result was anticipated from the surprising
similarity of the theoretically calculated propagation constants
for waves in circular tubes and waves between flat plates, if
both types of ducts possess the same equivalent radius as
defined in equation (22). Experimental measurements of the
pressure-transfer properties of samples of flat-oval tubing with
g = 0.060 over a frequency range from 500 to 3500 Hz agreed
very well with the theoretical calculations, confirming the
applicability of the theoretical models investigated.

Further calculations show, however, that for only somewhat
smaller values of g the greater damping in the flat-plate model
leads to significant differences between the flat-plate and
circular-tube predictions. Figures 11 and 12 display predicted
pressure-amplitude ratios for 7.7-cm lengths of tubing with
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Figure 12.—Calculated magnitude of ratio of transducer cavity pressure to
pressure at probe tube inlet as a function of frequency for flat-oval tubing
of length 7.7 cm and equivalent radius g = 0.010 cm.

g = 0.020 and 0.010 cm, respectively. The damping is higher,
and predictions from the two models are significantly different.
This suggests a lower bound of about g = 0.040 cm, below
which circular-tube properties may no longer be adapted with
confidence to tubing of other cross-sectional shapes with the
equivalent radius formalism. Further experiments would be
required to determine if either of the models considered here
gives a good representation of very small flat-oval tubing.

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio, March 13, 1986




Appendix A

Symbols
AB complex constants of integration (eq. (13)) ®R electric resistance per unit length of transmission
C,,C, complex constants of integration (eq. (B13)) line (eq. (C6))
e capacitance per unit length of transmission line r inside radius of tube with circular cross section
(eq. (C1)) S cross-sectional area of tube (eq. (23))
c adiabatic phase velocity of sound (eq. (11)) s general real parameter (eq. (19))
cp specific heat at constant pressure (eq. (6)) T position-dependent harmonic amplitude of
c, specific heat at constant volume temperature variations (eq. (7))
D/Dr  differential operator (eq. (2)) T, average or ambient absolute temperature (eq. (7))
F geometry-dependent function for flat plates (eq. T absolute temperature (eq. (5))
(16)) or ratio of Bessel functions for circular tube t time (eq. (7))
(eq. (C10)) U harmonic volume velocity amplitude (flow
Fi(x) arbitrary function of integration (eq. (B27)) amplitude) (eq. (C8))
fx) function for separation of variables (eq. (B10)) u axial component of u (eq. (8))
S shunt leakage conductance per unit length of u average value of u over cross section of tube (eq.
transmission line (eq. (C2) (18))
8 equivalent radius (generalized radius) (eq. (22)) u position-dependent harmonic amplitude of fluid
h distance separating parallel plates (eq. (17)) velocity (eq. (7))
i position-dependent harmonic amplitude of i’ (eq. u’ fluid velocity (eq. (1))
(C4)) vV position-dependent harmonic amplitude of V' (eq.
i’ electric current in transmission line (eq. (C6)) (C4y
Jo,J,  integer-order Bessel function of first kind (eq. vV volume of cavity (eq. (C39))
(19)) v, volume of tube section (eq. (C56))
J imaginary unit v electric potential difference (eq. (C1))
K complex constant of integration (eq. (B11)) v,w transverse rectangular components of u (eq. (10))
k polytropic constant for cavity (eq. (C39)) x axial rectangular coordinate (eq. (8))
L length of section of tube or duct (eq. (C23)) y total shunt electric or acoustic admittance per unit
L£ inductance per unit length of transmission line length (egs. (C5) and (C12))
(eq. (C6)) ¥,.2 transverse rectangular coordinates (eq. (8))
4 subscript labeling tube section (eq. (C46)) Z(x) acoustic impedance of tube at x (eq. (C17))
m mass of parcel of gas (eq. (23)) Z, characteristic impedance of tube (eq. (C19))
n complex effective polytropic factor for tube (eq. Z, acoustic input impedance of tube (eq. (C32))
(B31)) Z; acoustic terminating impedance of tube (eq.
Pr Prandtl number (eq. (B6)) (C33)
p position-dependent harmonic amplitude of excess Z total series electric or acoustic impedance per
pressure (eq. (7)) unit length (eqs. (C7) and (C10))
Pa average absolute pressure (eq. (7)) z dimensionless scaled transverse coordinate (eqgs.
p’ absolute pressure (eq. (1)) (B8) and (B20))
q(2) function for separation of variables (eq. (B10)) o shear wave number (eq. (B7))
q’ electric charge (eq. (C1)) ¥ ratio of specific heats, ¢,/c, (eq. (11))
R electric resistance ¢ general complex argument of function (eq. (16))
Ry ideal gas constant (eq. (5)) A thermal conductivity (eq. (6))



Pq
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coefficient of shear viscosity (eq. (1))
position-dependent harmonic amplitude of density
variations (eq. (7))

average fluid density (eq. (7))

€ 6 Q@

absolute fluid density (eq. (1))
diaphragm deflection factor (eq. (C39))
complex propagation constant (eq. (13))
angular frequency (eq. (7))




Appendix B

Plane Waves Propagating Between Infinite Planes

Consider a rectangular coordinate system with two infinite
rigid plates located at y = =+ h/2. Suppose a wave propagates
in the space between them, and choose the x-axis to point in
the direction of propagation. The linearized equations de-
scribing the gas are those given as equations (8) through (12)
in the section Solving Fluid Equations for Noncircular Tubing,
except that since any z-location is equivalent to any other, the
z-derivative terms and hence the z-component fluid velocity
amplitude w disappear from the equations. Thus we seek to
find the small deviations from equilbrium by solving

1dp p o

Lo _1op pou 1
Jou o ox o oy (B1)
0= - gg); (B2)

ou 0dv
jao = = pa<5; - 5;) (83)
o= g;(p — puRoT) (B4)

’T .

JwpgcpT = )‘55 tJjwp (B5)

We start with equation (B5). When the Prandtl number
which relates viscous and thermal effects is defined as

Pr= ‘—L)—TE (B6)
the shear wave number as

a =% /pa‘*’ (B7)
m

and a new dimensionless variable z as

2= a<§>\/ﬁ (BS)
equation (B5) may be written as

T+— = (B9)

This may be solved by separation of variables. Let
T(x, z) = f(x)q(2) (B10)

Substituting this into equation (B9) yields

2
dq _ 1 plx) _ o

) +—= (B11)
1O+ gy f)
with the conclusions
fx) = p(x) (B12)
PaCpK
and
q(z) =C;sinz+ G cosz+ K (B13)

If the plates are isothermal, so that the temperature fluctations
vanish at the walls, the two boundary conditions are

T=0 (B14)
for

Lt

Y 2

or

qg=0 (B15)
for

o/Pr
==

Thus we find that in equation (B13)

=0 C=-——— (B16)

yielding
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T(x,z) = f(x)q(2)
cos Z
=|1- p(x) (B17)
<a\/ﬁ > pacp
cos
2
In terms of the original variables, this is
a/Pr y
COoS —"h—" ( )
x
T(xy)=| 1- £ (B18)

avPr PaCp
cos
2

Inserting the result of equation (B18) in equation (B4) and
using the fact that ¢, — ¢, = Ry, we find

<
2
|

—

p(x,y) =

(9}
i)

h
l—-————— | (&)

avVPr
cos
2
Next, the Navier-Stokes equation, equation (B1), may be

solved by separation of variables as was the energy equation.
If we let

<a«/7>? y>
cos
(B19)

Y
7=a < (B20
oy )
equation (B1) becomes
2
u au=— 1 dp (B21)

+— -
9z Jwp, dx

Letting u (x,z) = f(x)q{(z) and requiring that u vanish at the
plates because of viscous drag, we find

oy
cos | —
1 <h>

uxy) =—| ————"1

jwpa o
cos | —

(B22)

&%

Notice that at any particular x, the average longitudinal fluid
velocity is

hr2
u(x) = S u(x,y)dy

—h/2

S| -

(B23)

The quantity in square brackets appears in several expressions,
and it is given a special function notation:

o= (2)m (2) -

Finally we look at the equation of continuity, equation (B3),
which may be written

(B24)

(B25)

Inserting equation (B19) for p into equation (B25) and equation
(B22) for u, we get

IR ) I
dy Jwp, c? Y
[ oaNPry
COS
" (x)
X 1- p(x
a«/ﬁ)
COS
B 2
B 24
COos (T) d2
| — 1 |22 (B26)
[s4
CoS | —
| 2

If we then integrate with respect to y, the result is




1
v{x,y) = —=yY ——
Jopg \ € Y

h

y aNPr (a Pr>
COoS
| 2
()
sin | —
h h d*p

| =———— -y |5 +F
- <a> y |+ P (B27)
COS 5

At the rigid plates, v, the transverse component of the fluid
velocity, must vanish. Setting equation (B27) equal to zero
first at y = +h/2 and then at y = —h/2 and adding the two
results show that F; (x) = 0. Subtracting one equation from
the other and cancelling i give

B ) <a\/ Pry
sin
h

p(x)

d’p ? vy—-1
F(a)@-?'y[l+TF(a\/E')]p=0 (B28)

L

This has the solution

p(x) = Ae¥” + Be™¥* (B29)

where the propagation constant ¢ may be written

o= g [F()] —”2\/2 (B30)

by using the notation

ne= [1 +VT_1F(OA/FE)]—l B31)

The quantity n may be regarded as a complex effective
polytropic factor for pressure changes in the tube (ref. 4).

Since ¢ is a complex constant with positive real part,
equation (B29) together with equation (7) represents a
superposition of damped traveling plane waves, one of
amplitude A traveling in the —x-direction and one of amplitude
B traveling in the +x-direction. The constants A and B are
determined by boundary conditions.

Inserting equation (B29) and its derivative into the
expressions for v (eq. (B27)), u (eq. (B22)), p (Eq. (B19)),
and T (eq. (B18)) completes the solution of the problem.



Appendix C

Transmission-Line Formalism

Once the general expressions for the pressure wave in a tube
have been obtained, it remains to calculate the transfer
properties of particular arrangements of probe tubing and
transducer cavities. Bergh and Tijdeman (ref. 4) derived a
workable but cumbersome recursion formula for this purpose.
Another approach, which is fairly commonly used for one-
dimensional acoustic waves propagating in ducts, is based on
equations developed to describe electrical transmission lines.
Since the transmission-line formalism with its ABCD matrices
is much more compact and flexible than the Bergh and
Tijdeman recursion relation of reference 4 (the matrices enable
one to easily calculate pressure transfer relations for a greater
variety of combinations of tubing and to evaluate other
quantities of interest such as input impedances), it seems
worthwhile to show how the acoustical equations are analogous
to the transmission-line ones. The acoustical analysis may then
be carried forward in a form suggested by the formalism
developed for transmission lines.

Equations for Electrical Transmission Lines

Consider a coaxial cable transmission line for definiteness,
although the same concepts apply to parallel-wire and other
types of transmission line (ref. 16). Any transmission line is
characterized by a distributed electric capacitance per unit
length €, inductance per unit length £, resistance per unit
length & (including both conductors), and leakage conductance
per unit length G of the gas or other dielectric between the
conductors (G Ax is the reciprocal of the inter-conductor
leakage-resistance in length Ax). If a potential difference
between the two conductors is set up at one end of the cable,
charge will start to flow. Let us find differential equations for
the current i’ in the central wire and potential ¥’ of the central
wire relative to the outer one, as functions of the distance x
along the wire and of the time.

As suggested in reference 16, choose an element of the
transmission line of infinitesimal length Ax for analysis. There
are four physical relations or quantities of interest: the
capacitive relation between the voltage ¥’ and the charge on
the central wire in Ax, the inductive emf associated with the
rate of change of the current in Ax, the i’ R drop in potential
along the conductors, and the leakage current between the
conductors due to conductance through the intervening
medium.

The charge g’ on length Ax of the central conductor is

g’ =€)V (C1)

The rate at which charge leaves Ax, traveling down the
conductor, differs from the rate at which it enters by an amount
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equal to the leakage current through the dielectric plus the rate
at which the local capacitance is being charged. That is,

a ’
Ai’ = — V/(QAX) _—aqT (C2)

Substituting from equation (C1) and dividing by Ax give

di’ av’
=—-Q0V -C— C3
ox s ot ©3)

If harmonic time dependence is assumed in the form

V' = Vel (C4a)

i =ie (C4b)

then the first basic transmission-line relation between complex
amplitudes is

%: — (G +jo@)V = — YV (C5)

Here ¢V is the total distributed shunt electric admittance per
unit length of line.
The potential drop along Ax is

di’
AV’ = —i"(®Ax) — ("GM)EI; (C6)
Dividing through by Ax and assuming harmonic time de-
pendence result in the other transmission-line relation:

av
; =—-(® +jwl)i= - Zi (7))

In this equation, Z is the total distributed series electric
impedance per unit length of the line.

Analogous Quantities for Acoustic Tubes

In the natural analogy with an acoustical duct, the excess
pressure p is associated with the electric potential and the




volume velocity is associated with the electric current. At any
cross section the volume velocity or flow U is defined as

U=Su (C8)

where S is the cross-sectional area of the duct carrying the
wave, and @ is the fluid velocity averaged over the cross
section. Multiplying the volume velocity by the average fluid
density gives the mass passing any point per unit time, so that
conservation of mass can be conveniently expressed directly
in terms of conservation of volume velocity.

Notice from equations (B23) and (B24) that

dp _ J@pa

dx SF(a) ©

so by analogy with equation (C7), the total distributed series
acoustic impedance per unit length of the duct may be said to be

w)p,c 1
=—j{-)=—— C10
p4 J<C> s F@) (C10)

As a function of «, Z depends on the viscosity but not on the
thermal conductivity of the gas. The imaginary part of Z/w
is the distributed inertance of the fluid per unit length, while
the real part of Z is the distributed series acoustic resistance
of the duct per unit length, due to viscous damping. In the
section Comparison with Flat-Plate Geometry, it is pointed
out that the expressions for pressure and longitudinal fluid
velocity waves in a circular duct deduced by Bergh and
Tijdeman in reference 4 have the same form as the ones derived
here for parallel flat plates. All the circular duct results may
be obtained from the ones for parallel flat plates by replacing
the function F(a) defined in equation (16) by the Bessel
function ratio J,(a)/Jo(ex). For that reason, it is possible to
use the equations of this appendix to analyze either flat plates
or circular ducts, by letting F() refer to the function of
equation (16) or to the Bessel function ratio, depending on
the case of interest. In addition, experiments described in this
report show that, within limits, tubes with other cross-sectional
shapes may be treated with either flat-plate or circular-tube
functions if the tube is described in terms of its equivalent
radius.

Differenting equation (C9) with respect to x and using
equation (B28), we find

dUu S [w y—1
—=—j—- 1+ ——F(aVPr (C11)
dx ! pac<c>’y[ Y <a )]p

which is the other transmission-line relation for the acoustical
wave in a duct. The total distributed-shunt acoustic admittance
per unit length is

S
iy (2>_ Y ©12)
c/pin

which depends on thermal conductivity but not viscosity. The
imaginary part of Y/w is the distributed compliance of the fluid
per unit length, while the real part of Y is the reciprocal of
a resistance describing energy loss to the walls through thermal
conduction per unit length.

The two quantities Z and Y define the fundamental physical
properties of the duct. When multiplied by the appropriate
length Ax, they give the series impedance and shunt admittance
of an infinitesimal element of tube —a tube which is very short
compared to the wavelength of any acoustical disturbance in
the tube. Since an elastic fluid in a long tube sustains wave
motion in which a harmonic disturbance at one point is not
in phase with the disturbance at other locations, Z and Y
cannot be used to directly find the impedances of a finite length
of tube. Rather, the two quantities Z and Y are first used to
calculate the characteristic impedance and propagation constant
of the tube. It is then possible to analyze finite tubes with
various terminations, or combinations of tubes.

We may proceed as follows: Starting from the transmission-
line type equations

=-2U (C13a)

&%

=-%Yp (C13b)

SHBS

we differentiate equation (C13a) and substitute equation (C13b)
to get

d? du
=2 -=2Yp (C14)

This wave equation for p implies the result of equation (B29),
with propagation constant

p=vZY (C15)

From equations (C13a) and (C13b) again, the corresponding
volume velocity wave is

1dp

Z dx

Yy

U= - = — g(Ae“" - Be‘“")

Be =% — Ae"”‘) (C16)



The combination of Z and Y appearing in the last expression
also has physical significance. The acoustic impedance of the
duct at any point is defined as

Z(x) = Po (C17)
U(x)
Given our expressions for the waves,
Z Be™¥* + Ae®”
Zw = \/: e (C18)
Y Be ¥ — Ae¥*

If a wave is introduced at x = 0 into a semi-infinite tube along
the positive x-axis there will be no reflected wave traveling
back toward the origin. This implies that A =0. The
impedance of the duct under these conditions is independent
of position and is called the characteristic impedance of the

duct Z.. Thus
Y

At any x, the relation between Z(x) and the characteristic
impedance of the duct Z, at that point indicates the relative
amplitude and phase of leftward- and rightward-traveling
pressure waves in the duct. Rearranging equation (C18) shows
specifically that the ratio of leftward to rightward wave
amplitudes is

AR

17
— C19
y (C19)

Ae” e Z(x) - Z,
Be e/ Z(x) + Z,

(C20)

Transmission-Line Matrices

The stipulation of the values of p and its derivative dp/dx
at some point determines a unique solution to the wave
equation, as the constants A and B in equation (B29) are thereby
determined. Since the volume velocity U is proportional to
dp/dx (see eq. (C13)), the choice of pressure and volume
velocity at any point in a duct determines the pressure and
volume velocity at any other point. That is, the pressure and
volume velocity at any point in a duct can always be expressed
as a function which is a linear combination of the pressure
and volume velocity at a reference point. This fact leads to
the transmission-line equations and ABCD matrices (ref. 17).

For example, let the wave amplitudes at x = 0 in a long duct
be called p, and U,, with the corresponding quantities at
x = L being p; and U;. From equations (B29) and (C16) we
obtain

(B — A)
Uy = —22 c22
0 Z (C22)
pL = Ae¥* + Be ~¥F (C23)
Be ¢t — Ae*t
y, =BT =47 (C24)

Z
Equations (C23) and (C24) may be solved for A and B as

—ZU —oL
A= (pL ; L)e (C25)

_ (pL + ZcUL)ewL
B 2

B (C26)

Inserting equations (C25) and (C26) into equations (C21) and
(C22) yields

po = pr cosh oL + U, Z. sinh oL Cc27)
1 .
Uy = pLE sinh ¢L + U; cosh oL (C28)
c
which may be written as a matrix equation
Do cosh oL Z.sinh oL | | pp
= (C29)
1
Uy E sinh oL cosh oL U,

c

The matrix is called the transmission-line matrix, or the ABCD
matrix, the latter name coming from expressing the generic

2 by 2 matrix as
A B
CD

There is no connection between the name ABCD matrix and
the 4 and B in equations (C25) and (C26).

The transmission-line matrix can easily be used to calculate
the input impedance of a duct of length L which is closed at

(C30)




the far end. The boundary condition is expressed by setting
U, = 0. Then

Do cosh ¢L Z,sinh oL | | p;
1 .
Uy — sinh ¢L cosh oL 0
L Z,
[ p cosh oL
= (C3D)
PL .
— sinh ¢L
Lz
and
_ Po _
Z,=—=Zcoth oL (C32)
Uo

The input impedance can be calculated just as easily for an
arbitrary terminating impedance Z;. The result is

—7 Zy cosh oL + Z_ sinh oL

Zon=Z - (C33)
Z7 sinh ¢L + Z, cosh ¢L

Other events in the life of a transmission line may also be
expressed in terms of ABCD matrices including the effects of
various kind of discontinuties in the line. Suppose that at some
point in a duct there are several side branches so that not all
the mass arriving at that point from the upstream duct leaves
by the downstream duct. Using subscripts u to describe the
situation just upstream of the discontinuity, d for the
downstream side of the discontinuity, and 1, 2, 3, ... for the
entrances to the side branches, we have

Pu=Pa=pi=pr=p3=.. (34)
and
U=Uj+ U+ U+ Us + ... (C35)

Expressing U in terms of the input impedance to branch 1,
denoted Z,, as

(C36)

and expressing the flow into the other branches in a similar
way, we obtain

1 1 1
U=U;+(—+—+—+... Cc37
f <Z1 ztz >Pd (C37)
or

Pu 1 0} pa
= (C38)

U, 1+1+ + 1 U,

p - p d

‘ zZ, 7, Z

As pointed out again in the section Applications of ABCD
Matrices to Compound Systems, this matrix is equal to the
product of several matrices of the same form, one for each
of the individual side branches.

A particular side branch could be an actual side tube attached
to the main duct to monitor the average total pressure, with
input impedance calculated as above or with other ABCD
matrices; or the side branch could be a local cavity, some of
the flow into which pumps up the pressure rather than going
out the other side. Bergh and Tijdeman (ref. 4) show, in the
developments leading up to their appendix equation (53), for
a cavity of volume V containing gas with polytropic constant
k (value between 1 for an isothermal process and vy for an
adiabatic one) and ddd (dimensionless diaphragm deflection)
factor o that the relation between the rate at which mass is
flowing in and out of the volume and the excess pressure is

(C39)

Since dm/dt can be considered equal to p,U, the effective
input impedance of such a cavity is

(C40)

and the appropriate ABCD matrix for such a volume is

(C41)
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Many other ABCD matrices can be derived. One can imagine
a discontinuity in the form of a porous plug in a duct or an
impervious, flexible membrane with mass, where there is a
pressure discontinuity but the volume flow is continuous. This
amounts to a lumped series impedance Z’ in the duct, with

matrix given by
1 Z
(C42)
01

There is actually a small series impedance associated with a
step change in the radius of a circular duct (ref. 18), which
can be placed in such a matrix.

An arbitrary discontinuity can be represented by a com-
bination of series and shunt impedances. An ABCD matrix has
been written for a section of duct with a conically tapered cross
section (ref. 17).

Applications of ABCD Matrices to Compound Systems

Suppose one wishes to analyze the pressure-transfer
properties or calculate the input impedance of a system of many
interconnected parts, such as the general one shown in
figure 13. All that is required is to write down the ABCD
matrix for each separate part and then multiply them together.
Since

]

r Po Yo /~Hole in side 7
\ Entrance /
\

\

\

\

\

Closed
end

\

// // // \\ \\
\ ..
/ / / \— Tube 2 — Cavity 1
/ / Ltubes N\ une y
/ L Tube 6 - Cavity 3
£ Tube 8 with attached
tube 4

Figure 13.—General compound linear acoustic system.

1 0 1 0 1 0

= (C43)
N N
Z, Z, Z, Z,

a compound side branch discontinuity such as a cavity with
an attached side tube can be represented by either one overall
matrix or the product of two matrices, one for each of the
branches at that point. The pressure and volume velocity at
the left entrance to tube 2 in figure 13 are given by

D2 matrix for matrix for P,
= (C44)
U, tube 2 cavity 1 0

while at the far left entrance to the complete system we have

tube

id it tub it
s1e} |:cav1y} { ue} |:cav1yj| ‘:pl:' (C45)
4 3 2 1 0

ABCD matrices

It is quite easy to write computer programs to evaluate the
matrices, multiply them, and print out input impedance
Z,, = po/ Uy or pressure-transfer function p;/py. (Since the
equations are linear, for these calculations p; may be set
equal to an arbitrary constant such as 1.)

Derivation of Bergh and Tijdeman Recursion Relation

While it is much easier to program and use the ABCD
matrices than the Bergh and Tijdeman recursion relation (ref.
4), it is a satisfying exercise to derive the recursion relation
from the matrix formalism and thus show they are equivalent.
Consider the system of two tubes and a cavity shown in
figure 14. At the entrance to the tube of length L, ;, just
after the cavity of volume V,, we have from equation (C29)

18

g1 (L ) |
£-1 L vy

D RIS

Lg+1

Figure 14.—Acoustic system consisting of cavity with input and output tubes,
used in derivation of Bergh and Tijdeman recursion relation.

P cosh ¢py1Lps+y Z, p41 SIN @py 1Ly

U sinh @p41Le+) cosh @py 1 Lpsy

c,i+1

x (C46)
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Multiplying this equation out, we find from the first component

Pt =Pe+1 C0sh @py 1Lyt + Zc g4y Upyy sinh oy 1Ly (C47)
which implies
— h L
Ups s _Pe— Peva .COS Po+ 1+ 1 (C48)
Z, ¢4y sinh @p 1Ly
and from the second component
_ Pe+1 .
U,= sinh @py1Le41 + Upey cOSh @piLpyy  (C49)
c{+1

Inserting equation (C48) into equation (C49) gives as a result

D

c k

PaC c,{+1

So we finally calculate the pressure at the input of tube £ by
multiplying equation (C52) by the ABCD matrix for a tube
of length L,. The result is

Pt—l = p( COSh ‘pr[ + Zc,g Slnh (png

V. 1
X 4J <g>‘_¥__y <0 + “)Pe + Pees sinh @p1Lgy
¢/ pac k Z, 44

+ <Pe — Pe+1 cosh gy 1Ly
Z; 041 sinh @py 1 Lpsy

) cosh ¢ 1Ly 1} (C53)

Dividing by p, and rearranging yield

) v 1 .
Pl _ cosh oLy + j <g>‘¥__e <0 + ";>Zc,€ sinh oL,

P (4

PaC
Z, sinh gL,
Z, vy sinh @py Ly

(COSh eee1lerr — I.’iﬂ) (C54)
Pe

The second of the three terms summed on the right side of

the equation can be transformed into the Bergh and Tijdeman
form by noticing that the last equalities in equations (C12) and

V, 1 . - cosh L
j<_c3>'y_g <a +_>p8+§t+1 sinh gy 1Ly y + <Pl Pe+1 Pe+1 1+1> cosh @ps Lot

_ P

U, sinh ¢y 1Ly

cf+1

+ <Pl — Pes1 €0sh @py 1 Ley (C50)

: cosh @pr1le4g
Z, ¢4y sinh @py Loy >

In view of equation (C41), just upstream (left) of the cavity,
the pressure and volume flow are given by

1 0 Py

vV 1
{0 CHIIK
c/p. k

where U, is expressed by equation (C50).
When the multiplication in equation (C51) is carried out,
the pressure-velocity vector at the output of tube £ is

(C51)

(C52)

Z, g4y sinh @py Ly

(C19) imply (when the numerator and denominator are
multiplied by tube length L)

(C55)

(As shown by the fact that it cancels out in equation (C55),
the characteristic impedance Z does not properly depend on
the length of a tube. However, Bergh and Tijdeman apparently
wish to introduce it so that they can express their results in
terms of the tube volume V; = SL. Note that in all Bergh and
Tijdeman expressions, the tube volumes V, are somewhere
divided by the corresponding tube length L.) Finally, when
equation (C10) and the next-to-last part of equation (C19) are
used, the ratio of characteristic impedances in the last term
is equivalent to

Zep _ Zepers _ Vs 100 1le Fagyq)
0241 Vz,eWLH 1Fap

(C56)
Zc,i+1

So, regarding the F function as the ratio of Bessel functions
Jo/Jy, we get the Bergh and Tijdeman recursion relation of
reference 4, which is
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V, 1
= [cosh @eLy + L <ag + ;)nggang sinh oL, +
?

Examples of its use are found in reference 5.

20

Vier190051LeJo (adz (0 1) sinh o, L,

VeeweLor 1 J2 (o (0t ) sinh o, Ly,

x <COSh Cerrleer —

Do+
]

-1
-——):| (C57)
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Appendix D
Computer Programs

Several short FORTRAN routines have been written to apply
the ABCD matrices to the analysis of probe tubes coupled to
transducer cavities. The basic package consists of three
general-purpose subroutines, which are called by a main
program designed to reflect the structure of the system being
analyzed. Listings for the subroutines and two sample main
programs are given at the end of this appendix.

Subroutine TUBE evaluates the ABCD matrix of equation
(C29) for a duct of generalized radius G, cross-sectional area
S, and length L. It uses the formulas from either the circular-
cylinder or the infinite-plate geometry, depending on whether
the value of parameter IS is 1 or 2, respectively. The previous
values of the components of the pressure-volume velocity
vector are read in as the array PU, they are multiplied by the
ABCD matrix, and the new vector is returned in the same
variables. Information about the frequency, thermodynamic
properties of the fluid, and mathematical constants is provided
in COMMON blocks which must be initialized in the calling
program. The propagation constant PHI calculated within
TUBE is made available to the calling program in another
COMMON block, to use if desired.

Function RFUN is used to evaluate either the F of equation
(B24) or the ratio J,/J;, depending on the value of parameter
IS. It is called by subroutine TUBE and uses subroutines in
the NASA Lewis Research Center FORTRAN library to
compute the Bessel functions. For large arguments the
common limiting form given in equation (21) is used.

Subroutine VOL evaluates the ABCD matrix of equation
(C41) for a small cavity in the line. The cavity is characterized
by its volume V, ddd factor SIG, and polytropic constant
POLYK. The appropriate values of POLYK vary from 1.0
for an isothermal process to 1.4 for an adiabatic one. This
constant is set equal to 1.0 in the programs of reference 5,
perhaps a better estimate could be made on the basis of the
expression for n in equation (B31). Subroutine VOL also takes
in and updates the current pressure-flow vector.

Two examples of calling programs are provided. The first
was written to calculate, for frequencies from 25 to 5000 Hz,
the pressure transfer function of a single tube and closed
volume system, using both circular- and flat-geometry
formulas for the tubing. The results are plotted on the same
axes for comparison. The constants are defined in lines 1300
through 2300, 2800 through 2900, and 3600 through 3800.
Dimensions of the tubing are read in by lines 2950 through
3190, and the transmission-line calculations are carried out
at each frequency in the DO-loop in lines 3500 through 4960.

The pressure-volume velocity vector for the circular-tubing
model is the array PUR, while that for the flat-plate model
is PUF. The remainder of the program plots the results by
using routines standard at the Lewis Research Center,
Numerical values for circular geometry computed with this
program agree with calculations from the programs of
reference 5 and with graphs in Bergh and Tijdeman (ref. 4).

The output of this program for sample sections of flat-oval
tubing leading to a small, closed cavity is shown in figures
9 through 12. In addition, to help an interested user determine
that the computer listings have been copied correctly, table I
gives selected numerical data calculated by this program.

The second program is an example of how the routines
would be used to compute the pressure response of an infinite-
line probe. Once again the calculations are done twice, once
for each model geometry, and both results are plotted for
comparison. The sample graphs in figure 15 show how similar
the results are.

TABLE 1.--SAMPLE NUMERICAL DATA FROM
COMPUTER PROGRAM

(a) Input Parameters

Example | Cavity | Generalized | Area of | Length | Frequency,
volume, | radius of tube, of tube, Hz
cm’® tube, cm? cm
cm
1 0.01325 0.060 0.01714 | 5.15 1350
2 .01325 5.15 2700
3 01325 5.15 4200
4 .01630 7.71 900
5 .01630 7.71 1900
6 .01630 7.71 2800

(b) Calculated Output

Example Circular tube Flat plates

Amplitude | Relative | Amplitude | Relative

ratio phase, ratio phase,

deg deg

1 8.98 -91.1 8.51 -91.1

2 905 -179.2 .904 —179.2

3 4.46 -261.7 4.33 -261.7

4 7.29 -82.6 6.82 -82.6

5 917 —180.3 915 -180.3

6 3.62 —249.2 3.49 —249.2
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(a) Ratio of amplitude of transducer cavity pressure to amplitude of inlet

pressure.

(b) Relative phase of transducer cavity pressure and inlet pressure.

Figure 15.—Calculated ratio of cavity to inlet pressure and relative phase of two
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pressures as function of frequency for infinite-line probe made from flat-oval
tubing with g = 0.061 cm and § = 0.01811 cm?. Distance from inlet end
to transducer, S c¢m; distance from transducer to closed end, 100 cm.

In general, names of variables are intended to suggest their
significance. Definitions of variables placed in COMMON are

as follows:

AMDENS
AMPRES
FREQ
GAMMA
J

J32
OMEGA
PHI
RHOC
SPEED
SRPRN
VISC
WAVENO

ambient density, p,

ambient pressure, p,

ordinary frequency, f

ratio of specific heats, v = ¢,/c,
V-1,j

J raised to 3/2 power

angular frequency, w

propagation constant, ¢

the product p,¢

adiabatic speed of sound, ¢
square root of Prandtl number, VPr
coefficient of shear viscosity, p
free-space wave number, k = w/c




Program Listings

Subroutine TUBE.—

(]
[=]
(=]
(=}
O OO0O0O O

0000100 SUBROUTINE TUBE(G,S,L,IS,PU)
0000200 C
0000300 C SUBROUTINE TO EVALUATE ABCD MATRIX FOR TUBE OF
0000400 C LENGTH L, CROSS SECTIONAL AREA S, AND
0000500 C 2(AREA)/PERIMETER EQUAL TO G. THE PRESSURE-
0000600 C VOLUME FLOW VECTOR PU IS UPDATED.
0000700 C
00060300 C IS = 1 --> USE CYLINDRICAL DUCT FORMULAS
0600900 C IS$ = 2 -=> USE PARALLEL PLATE FORMULAS
0001000 C
0001100 COMPLEX PU(2),J,J32,PHI
0001200 COMMON /XFREQ/ FREQ, OMEGA,WAVENO
0001400 COMMON /THERMO/ GAMMA, SRPRN, AMPRES, AMDENS, SPEED, RHOC,VISC
0001500 COMMON /XTUBE/ PHI
0001600 COMMON /XCONST/Z J,J32,P1
0001700 C
0001800 REAL L
0001900 COMPLEX ABCD(2,2),PUTEMP(2),Z,2C,AL,ALP,CN,CD,CE,CS
0002000 COMPLEX RFUN
0062100 C
00062200 AL = J32%(GXSQRT(AMDENS*OMEGA/VISC))
0002300 ALP = ALXSRPRN
0002400 CN = GAMMA + (GAMMA - 1.)XRFUNCALP,IS)
0002500 CD = RFUNCAL,IS)
0002600 PHI = WAVENOXCSQRT(CN/CD)
0602700
0002800 Z = ~JXLAVENOXRHOC/(S*CD)
0002900
000 CHARACTERISTIC IMPEDANCE = SERIES IMPEDANCE/LENGTH /
0003160 PROPAGATION CONSTANT

0003200

£003300 2C = Z/PHI

0003400

0003450 CE = CEXP(PHIXL)

0003500 ABCD(1,1) = (CE + CMPLX(1.,0.3/CE)/CMPLX(2.,0.)

0003600 ABCD(2,2) = ABCD(1,1)

0003700 €S = (CE - CMPLX(1.,0.)/CE)/CMPLX(2.,0.)

0003300 ABCD(1,2) = ZCxCS

60039500 ABCD(2,1) = CSs2C

0004000 C

0004100 D01 K =1, 2

0004200 1 PUTEMP(K) = PU(K)

0004300 C

0004400 DO 3 M=1, 2

0004500 PUCM) = CMPLX(0.,0.)

06004600 P02 N=1, 2

0004700 2 PUIM) = PU(M) + ABCD(M,N) % PUTEMP(N)
0004800 3 CONTINUE
0004900 C
0005000 RETURN
0005100 END



Function RFUN.—

0001920 COMPLEX FUNCTION RFUN(Z,IS)

6002000 C

6602100 COMPLEX Z2,J0,J1,J2,Y0,Y1,N,D,B
0ogz2z200 C

0002220 C IS = 1 -=> EVALUATES J2(Z2)/J0(2)
0002240 C IS = 2 =-> EVALUATES (TAN(Z/2)7(2/2)) - 1.
0002260 C

0002265 A = REAL(2)

0002270 C = AIMNAG(Z)

0602275 IF (A .EQ. 0.0 .AND. C .EQ, 0.0) GO TO 3
0602280 IF (ABS(C) .GE. 140.) GO 710 4

0002285 C

6002300 60 TO (1, 23,15

0002400 C

0002500 1 CALL ZBESJY(Z,J0,J1,Y0,Y1)

0002600 J2 = CHMPLX(2.0,0.0) % JlsZ ~ JO
0002700 C

0002800 C SCALE NUMBERS BEFORE DIVIDING TO
00029C0 € AVOID EXPONENT OVERFLOW

00603000 C

0003100 AR0 = REAL(JO)

0003200 AID = AIMAGC(JO)

0003300 AR2 = REAL(J2)

0003400 AI2 = AIMAG(J2)

0003500 = AMAX1CABSCAR0),ABSCAIO0),ABSCAR2),ABS(AI2))
0003600 N = CMPLX(AR2/A, AI2/A)

0003700 D = CMPLXCARO/ZA, AIO/A)

c003900 RFUN = N/D

0004000 GO TO 5

0004100 C

0004200 2 B = Z/CMPLX(2.0,0.0)

0004300 RFUN = CSIN(B)/(B*CCOS(B)) - CMPLX(1.0,0.0)
0004500 GO TO 5

0004600 C

0004700 3 RFUN = CMPLX(0.,0.)

0004800 GO 10 5

0004900 € _

0005000 4 RFUN = CMPLX(-1.,0.) + CMPLX(0.,2.)/Z
0005100 C

0005200 5 RETURN

0005300 END
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Subroutine VOL.—

0000100
0000200
0000300
0000400
0000500
0000600

01200
001400
0001500
0001600
0001700
0001800
6001900
gco2000
0002100
0002200
0002300
0002400
0002500
0002600
0002700
0002800
0002900
0003000
00031080
0003200
0003300

OOOAOOOO0

SUBROUTINE V

SUBROUTINE T
VOLUME V. P
INCREASE IN

OL(V,SIG,POLYK,PU)

0 EVALUATE ABCD MATRIX FOR A LUMPED
ARAMETER SIG IS THE DIMENSIONLESS
TRANSDUCER VOLUME DUE TO DIAPHRAGM

DEFLECTION WITH PRESSURE, AND POLYK IS THE

POLYTROPIC C

ONSTANT FOR THE VOLUME (SEE B & T).

THE PRESSURE-VOLUME VELOCITY VECTOR PU IS

UPDATED.

COMPLEX PU(2
COMMON /XFRE
COMMON /THER
COMMON /XCON

COMPLEX ABCD

ABCD(1,
ABCD(2,
ABCD(1,
ABCD(2Z,

DO 1 M =1
PUTEMP(M)

DO 3 Mm=1,
PU(M) = CMPL
1
U

"

DO 2 N =1,
PU(M) = PUM
CONTINUE

RETURHN
END

30 J,J32
Q/ FREQ,OMEGA,WAVENO

M0/ GAMMA, SRPRN,AMPRES, AMDENS, SPEED,RHOC,VISC
5Tz J,J32,P1

(2,2),PUTEMP(2)

CMPLX(1.,0.)

ABCD(1,1)

CMPLX(0.,0.)

JX(WAVENO*GAMMAXVX(SIG + 1./POLYK)/RHOC)
2

PUCM)

2
X(0.,0.)

N

) + ABCD(M,N) % PUTEMP(N)



Program to plot comparison of circular and flattened tubes. —

0001500

0002300
000245080
3002500
0002520
0002530
0002540
0002560
0002580
6002600
6002300

0003190
0003310
0003420
0003440
0003460
0003500
0003600
0003650
0003700
0603800
0003900
0004000
0004100
0004200
0004220
0006240
0004300
0004350
0004400
0004500
0004600
00064650
00047090
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PROGRAM TO PLOT COMPARISON OF CIRCULAR AND
FLATTENED TUBES, CALCULATIONS USE
TRANSMISSION LINE FORMALISHM.

CGS UNITS USED THROUGHOUT.

COMPLEX J,J32,PHI

COMMON /XFREQs FREQ,OMEGA,WAVENO

COMMON /THERMOQ/ GAMMA, SRPRN, AMPRES, AMDENS, SPEED, RHOC,VISC
COMMON sXTUBE/ PHI

COMMON /XCONST/ J,J32,P1

PI = 3.141593
J = CMPLX(0.,1.)
J32 = CEXP(CMPLX(0.,0.75%PI))

GAMMA = 1.4017

SRPRN = 0.8414

ATM = 1.0129E6

AMPRES = ATM

TEMPC = 26.85

AMDENS = AMPRES/(2.8688E6%(TEMPC+273.15))
SPEED = SQRT(GAMMAXAMPRES/AMDENS)

RHOC = AMDENS % SPEED

VISC = 1.846E-4

COMPLEX PRATIO,PUR(2),PUF(2)

REAL XF(200),AR(200),AF(200),PR(200),PF(200)
INTEGER IVARS(10)

REAL XTIT(3)/'FREQ',"UENC','Y '/

REAL YTITI(4)/"AMPL','ITUD','E RA',"'TIO '/
REAL YTIT2(2)/'PHAS','E v/

SIG = 0.
POLYK = 1.2

WRITE (6, 1)

FORMAT (/' ENTER CAVITY VOLUME')

READ (5, 2, END=20) V

FORMAT (G10)

WRITE (6, %)

FORMAT (/' ENTER GENERALIZED RADIUS OF DUCT")
READ (5, 2, END=20) G

WRITE (6, 6)

FORMAT (/' ENTER CROSS-SECTIONAL AREA QF DUCT')
READ (5, 2, END=20) S

WRITE (6, 72

FORMAT (/' ENTER LENGTH OF DUCT')

READ (5, 2, END=20) XLEN

RMX = 0.
NPTS = 200

DO 10 KF = 1, NPTS
FREQ = FLOAT(25%KF)
XF(KF) = FREQ

OMEGA = 2. ¥ PI % FREQ
WAVENG OMEGA/SPEED

PUR(1) = CMPLX(1l.,0.)
PUR(2) = CMPLX(0.,0.)
CALL VOL(V,SIG,POLYK,PUR)
PUF(1) = PUR(1)

PUF(2) = PUR(2)

CALL TUBE(G,S,XLEN,1,PUR)
CALL TUBE(G,S,XLEN,2,PUF)

PRATIO = CMPLX(1.,0.)/PUR(1)}

ARCKF) = CABS(PRATIO)

RMX = AMAXI1(RMX,AR(KF})

PHA ATANZ2(AIMAG(PRATIO),REAL(PRATIO))I%180./P1

un




0004800 IF (PHA .GT. 0.) PHA = PHA - 360.

0004850 PR(KF) = PHA

0004900 C

600491C PRATIO = CMPLX(1.,0.)/PUF(1)
0004920 AF(KF) = CABS(PRATIO)

0004930 RMX = AMAXY(RMX,AF(KF))

0004940 PHA = ATAN2(AIMAG(PRATIO),REAL(PRATIO))*180./PI
0004950 IF (PHA .GV7. 0.) PHA = PHA - 360.
0004960 10 PF(KF) = PHA

0004370 C

0004973 IVARS(1) = 8

0004576 IVARS(2) = NPTS

0004979 IVARS(3) = 66

0004582 IVARS(4) = 62

0004985 IVARS(5) = NPTS =~ 1

0004938 IVARS(6) = 25

0004991 IVARS(7) = 0

0004994 IVARS(8) = NPTS

0004997 CALL GINTVL(O0.,RMX,10,1,AMIN,AMAX)
0005000 CALL GINTVL(O0.,5000.,10,0,AMIN, AMAX)
0005003 CALL GPLOT(XF,AR,IVARS)

0005006 C

0005009 IVARS(3) = 98

005012 IVARS(4) = 65

6005015 CALL GPLOT(XF,AF,IVARS)

0005018 C

00605021 CALL TITLE(4,9,15,XTIT)

6005024 CALL TITLE(3,15,15,YTITL)

0005027 CALL CORNER(1)

0005030 CALL COPY(1)

0005033 CALL DISPLACL)

0005036 C

0005039 IVARS(3) = 66

0005042 IVARS(4) = 62

0005045 CALL GINTVL(-360.,0.,10,1,AMIN,AMAX)
0005048 CALL GINTVL(O0.,5000.,10,0,AMIN,AMAX)
0005051 CALL GPLOT(XF,PR,IVARS)

6005054 C

0C05057 IVARS(3) = 98

0005060 IVARS(4) = 65

0005063 CALL GPLOT(XF,PF,IVARS)

0005066 C

0005069 CALL TITLE(4%,9,15,XTIT)

0005072 CALL TITLE(3,5,15,YTIT2)

00085075 CALL DISPLA(L)

0005200 C

0005220 GO YO 3

0005240 C

0005260 20 CALL TERM

0005300 STOP

0005400 END



Program to plot response of infinite line systems.—
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0002200
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PROGRAM TO PLOT RESPONSE OF INFINITE LINE
SYSTEMS.

COMPLEX J,J32,PHI

COMMON /XFREQ/ FREQ,OMEGA,WAVENO

COMMON ~/THERMO/ GAMMA, SRPRN, AMPRES, AMDENS, SPEED,RHOC,VISC
COMMON /XTUBE/ PHI

COMMOMN /XCONST/ J,J32,PI

PI = 3.1641593
J 8 cMPLX(0.,1.)
J32 = CEXP(CMPLX(0.,0.75%PI))

GAMMA = 1.64017

SRPRN = 0.8414

ATM = 1.0129E6

AMPRES = ATNM

TEMPC = 26.85

AMDENS = AMPRES/(2.8688E6X(TEMPC+273.15))
SPEED = SQRT(GAMMAXAMPRES/AMDENS)

RHOC = AMDENS % SPEED

VISC = 1.846E-4

COMPLEX PRATIO,PUR(2),PUF(2)

COMPLEX PREFR,PREFF

REAL XF(200),AR(200),AF(200),PR(200),PF(200)
INTEGER IVARS(10)

REAL XTIT(3)/'FREQ',"UENC',"Y 4

REAL YTITI(4)/"AMPL',"ITUD','E RA','TIO '/
REAL YTIT2(2)/'PHAS','E v/

SIG = 0.
POLYK = 1.2

WRITE (6, 1)

FORMAT (/' ENTER DISTANCE FROM SENSOR TO QUTLET'")
READ (5, 2, END=20) XL1

FORMAT (G10)

WRITE (6, 4)

FORMAT (/' ENTER GENERALIZED RADIUS OF DUCT")
READ (5, 2, END=20) G

WRITE (6, 6)

FORMAT (/' ENTER CROSS-SECTIONAL AREA OF DUCT")
READ (5, 2, END=20) S

WRITE (6, 7)

FORMAT (/' ENTER LENGTH OF INFINITE TUBE'")
READ (5, 2, END=20) XL2

RMX = 0.

NPTS = 200

DO 10 KF = 1, NPTS
FREQ = FLOAT(25%KF)}
XF(KF) = FREQ

OMEGA = 2. ¥ PI % FREQ
WAVENO = OMEGA/SPEED

PUR(1) = CMPLX(1.0E-6, 0.)
PUR(2) = CMPLX(0.,0.)
PUF(1) = PUR(1)

PUF(2) = PUR(2)

CALL TUBE(G,S,XL2,1,PUR)
CALL TUBE(G,S,XL2,2,PUF)

PREFR = PUR(1)

PREFF PUFCL)
CALL TUBE(G,S,XL1,1,PUR)
CALL TUBE(G,S,XL1,2,PUF)




00067900
0008000
0008100
8008200
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PRATIO = PREFR/PUR(1])

ARCKF) = CABS(PRATIO)

RMX = AMAX1(RMX,AR(KF))

PHA = ATANZ2(AIMAG(PRATIO),REAL(PRATIO))}*180./PI
IF (PHA .GT. 0.) PHA = PHA - 360.

PRCKF) = PHA

PRATIO = PREFF/PUF(1)

AF(KF) = CABS(PRATIQ)

RMX = AMAX1(RMX,AF(KF))

PHA = ATAN2(AIMAG(PRATIO),REAL(PRATIO))*180./P1
IF (PHA .GT. 0.) PHA = PHA - 360.

PF(KF) = PHA

IVARS(L) = 8

IVARS(2) = NPTS

IVARS(3) = 66

IVARS(4) = 62

IVARS(5) = NPTS - 1

IVARS(6) = 25

IVARS(7) = 0

IVARS(8) = NPTS

CALL GINTVL(O0.,RMX,10,1,AMIN,AMAX)
CALL GINTVL(0.,5000.,10,0,AMIN,AMAX)
CALL GPLOT(XF,AR,IVARS)

IVARS(3) 98

IVARS (%) 65
CALL GPLOT(XF,AF,IVARS)

CALL TITLE(4,9,15,XTIT)
CALL TITLE(3,15,15,YTITL)
CALL CORNER(1)

CALL COPY(L)

CALL DISPLACL)

IVARS(3) = 66
IVARS(4) = 62

CALL GINTVL(-360.,0.,10,1,AMIN,AMAX)
CALL GINTVL(O0.,5000.,10,0,AMIN,AMAX)
CALL GPLOT(XF,PR,IVARS)

IVARS(3) = 98
IVARS(4) = 65
CALL GPLOT(XF,PF,IVARS)

CALL TITLE(4,9,15,XTIT)
CALL TITLE(3,5,15,YTIT2)
CALL DISPLACL)

GO T0 3
CALL TERM

STOP
END
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